Fitting a Holt-Winters seasonal multiplicative model to a time series in XLSTAT

Dataset for ARIMA XLS77.5 KB

Tutorial video
  • Time Time series analysis software

  • System configuration

    • Windows:
      • Versions: 9x/Me/NT/2000/XP/Vista/Win 7/Win 8
      • Excel: 97 and later
      • Processor: 32 or 64 bits
      • Hard disk: 150 Mb
    • Mac OS X:
      • OS: OS X
      • Excel: X, 2004 and 2011
      • Hard disk: 150Mb.


  • Easy and user-friendly
    Easy and user-friendly XLSTAT is flawlessly integrated with Microsoft Excel which is the most popular spreadsheet worldwide. This integration makes it one of the simplest available tools to work with as it utilizes the same philosophy as Microsoft Excel. The program is accessible in a dedicated XLSTAT tab. The analyses are grouped into functional menus. The dialog boxes are user-friendly and setting up an analysis is straightforward.
  • Data and results shared seamlessly
    Data and results shared seamlessly One of the greatest advantages of XLSTAT is the way you can share data and results seamlessly. As the results are stored in Microsoft Excel, anyone can access them. There is no need for the receiver to have an XLSTAT license or any additional viewer which makes your team-work easier and more affordable. In addition, results are easily integrable into other Microsoft Office software such as PowerPoint, so that you can create striking presentation in minutes.
  • Modular
    Modular XLSTAT is a modular product. XLSTAT-Pro is a core statistical module of XLSTAT which includes all the mainstream functionalities in statistics and multivariate analysis. More advanced features contained in add-on modules can be added for specific applications. This way you can adapt the software to your needs making the software more cost-efficient.
  • Didactic
    Didactic The results of XLSTAT are organized by analysis and are easy to navigate. Moreover useful information is provided along with the results to assist you in your interpretation.
  • Affordable
    Affordable XLSTAT is a complete and modular analytical solution that can suit any analytical business needs. It is very reasonably priced so that the return of your investment is almost immediate. Any XLSTAT license comes with top level support and assistance.
  • Accessible - Available in many languages
    Accessible - Available in many languages We have ensured XLSTAT is accessible to everyone by making the program available in many languages, including Chinese, English, French, German, Italian, Japanese, Polish, Portuguese and Spanish.
  • Automatable and customizable
    Automatable and customizable Most of the statistical functions available in XLSTAT can be called directly from the Visual Basic window of Microsoft Excel. They can be modified and integrated to more code to fit to the specificity of your domain. Adding tables and plots as well as modifying existing outputs becomes easy. Furthermore, XLSTAT includes some special tools on the dialog boxes to generate automatically the VBA code in order to reproduce your analysis using the VBA editor or to simply load pre-set settings. This effortless automation of routine analysis will be a huge time saver on your part.

Dataset to fit a Holt-Winters seasonal multiplicative model to a time series

An Excel sheet with both the data and results can be downloaded by clicking here. The data have been obtained in [Box, G.E.P. and Jenkins, G.M. (1976). Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco], and correspond to monthly international airline passengers (in thousands) from January 1949 to December 1960.


We notice that on the chart, there is global upward trend, that every year, a similar cycle starts while the variability within a year seems to increase over time. The Holt-Winters seasonal multiplicative model is well adapted for this type of time series.

Setting up a Holt-Winters seasonal multiplicative model to a time series

After opening XLSTAT, select the XLSTAT / XLSTAT-Time / Smoothing command, or click on the corresponding button of the XLSTAT-Time toolbar (see below).


Once you've clicked on the button, the Smoothing dialog box will appear. Select the data on the Excel sheet.

The Series to analyze corresponds to the series of interest, the "Passengers".

After you selected the data, select the Holt-Winters method.

The option Series labels is activated because the first row of the selected data contains the header of the variable.


In the options tab, select the seasonal multiplicative sub-method.

Then, so that the model parameters are optimized (ordinary least square), check the optimized option. The period of the series is set to 12, because it seems the cycles are repeated every year (12 months).


Last, in the validation tab, enter 12 so that the last 12 values are not used to fit the model, but only to validate the model.


The computations begin once you have clicked on OK. The results will then be displayed.

Results of the fitting of a Holt-Winters seasonal multiplicative model to a time series

The first table displays the various criteria that allow to evaluate the quality of the fit, and to compare the fit of this model with other models (if available). We notice here that the R’² is very close to one, which indicates a very good fit.


Below the table that displays the estimates of the parameters of the model, a table gives the values of the original series, and the smoothed series (the predictions). Because of the constraints of the model, predictions are not available for the 13 first observations. Notice that a time variable "T" has been created to facilitate the graphical representation. For the last 12 observations predictions have been computed in validation mode and a confidence range is available.


On the chart below, we can visually see that the predictions are very close to the data.


In order to analyze better the results for the 12 validation months, we have zoomed on the 24 last months.


We notice that the quality of the previsions is excellent. Only twice, at T=135 and T=140 (March 1960 and August 1960), the model overestimates the reality by respectively 10% and 5%. As a conclusion, the Holt-Winters seasonal multiplicative model allows to very well take into account the upward trend, the seasonalities and the increase in variability within a period.